
XII Summer Workshop in Mathematics - UnB

Principal Typing for the λσdB-calculus

Kaliana dos Santos Dias de Freitas (kalianadias@gmail.com)
CIC - UnB

Abstract. The λσdB-calculus is inspired on λσ-calculus proposed in [1]. It is a calculus of explicit
substitutions (CES) containing all De Bruijn indexes in its syntax. The CES’s are extensions of the
λ-calculus that implement concretely its main operation, which is the β-reduction since they contain
the operation of substitutions as part of their language. The λσdB-calculus is confluent (ground)
and simulates the classical β-reduction. A version of λσdB with simple types was considered, which
we called B1-system. The B1-system enjoys properties as subject reduction and soundness, and, in
Church-style, B1 satisfies the type-uniqueness property. Terms may have many types depending on
the context in Curry-style. Therefore, another important property to study is the principal typing
(PT for short), which has also been called principal pair in [2]. The PT property in a type system
responds to question whether for a given term its most general typing can be found [3]. A system-
independent definition of PT due to Wells was proposed in [4]. He has proved that it generalizes
previous system-specific definition. In this work, a new definition of PT concerning B1 is proposed
and it is proven to be equivalent to that Wells’ definition. Finally, we prove PT property for B1
according to the proposed definition from a type inference algorithm.

References
[1] M. Abadi, L. Cardelli, P.-L. Curien, and J. Lévy, “Explicit substitutions,” Journal of functional

programming, vol. 1, no. 4, pp. 375–416, 1991.

[2] J. R. Hindley, Basic simple type theory, ser. Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 1997, vol. 42.

[3] D. L. Ventura, M. Ayala-Rincón, and F. Kamareddine, “Principal typings for explicit substitutions
calculi,” in Conference on Computability in Europe. Springer, 2008, pp. 567–578.

[4] J. B. Wells, “The essence of principal typings,” in International Colloquium on Automata, Lan-
guages, and Programming. Springer-Velag, 2002, pp. 913–925.

Theory of Computation Summer 2020


